Hinguar Primary School and Nursery

Times Tables Challenge

Expectations for each year group

No child should work beyond their year group

Foundation Stage (Red)

Bronze Level - Each child to be able to count up to 10
Silver Level - Each child to be able to count up to 20
Gold Level - Each child to be able to count on from a given number

Year 1 (Yellow)

Bronze Level - Each child to be able to recite their 10 times tables in order and out of order
Silver Level - Each child to be able to recite their 5 and 2 times tables in order and out of order
Gold Level - Each child to be able to calculate one more and one less than a given one, two or three digit number

Year 2 (Pink)

Bronze Level - Each child to be able to recite their 3 times tables in order and out of order
Silver Level - Each child to understand the place value of tens and ones Gold Level - Each child can compare numbers up to 100 using the greater than, less than and equals signs $><=$

Year 3 (Green)

Bronze Level - Each child to be able to recite their 4,8,50 and 100 times tables in order Silver Level - Each child to be able to recite their $4,8,50$ and 100 times tables in random order
Gold Level - Each child to be able to calculate 10 or 100 more than and less than a given number

Year 4 (Purple)

Bronze Level - Each child to be able to recite their 6, 7, 9 and 25 times tables in order Silver Level - Each child to be able to recite their 6,7,9 and 25 times tables in random order
Gold Level - Each child can count backwards through zero into negative integers.

Year 5 (Orange)

Bronze Level - Each child can recite all of their times tables out of order.
Silver Level - Each child can round a given number to the nearest 10,100,1000,10000,1000000,1000000
Gold Level - Each child can verbalise what the roman numerals stand for in numbers.

Year 6 (Blue)

Bronze Level - Each child can recite all of their times tables out of order including decimals.
Silver Level - Each child can convert between words and figures and understand place value up to $10,000,000$
Gold Level - Each child can solve simple algebraic equations using BIDMAS.
(Brackets, integers, division, multiplication, addition ,subtraction)

Class expectations

- Children to be tested regularly either by teacher or TA
- Once a child has completed a level they take their sheet to the office for a certificate
- Recommended that each child aims for one times table certificate a term

Red (Bronze)
Question How many?

I can count up to 10. The date I achieved this is:

Red (Silver)
Question

I can count up to 20 using base 10. The date I achieved this is:

Red（Gold）
I can count on from a given number．The date I achieved this is：

Question	Count on from the given number	Answer
1	10 कै कौ कौ कौ है	
2	15	
3	$5 \text { 人综 绽 }$	
4	2	
5	3	
6	$15 \text { 人约约约 }$	
7	7	
8	8	
9	10 $\begin{aligned} & \text { को जै कै है } \\ & \text { है कै जै है } \end{aligned}$	
10	4 	

Yellow Yr1 (Bronze)

I know my 10 times table in order and in random order. The date I achieved this is:

$\frac{10 \times \text { table }}{1 \times 10=10}$	$\frac{10 \times \text { table }}{2 \times 10=20}$
$2 \times 10=20$	$8 \times 10=80$
$3 \times 10=30$	$4 \times 10=40$
$4 \times 10=40$	$6 \times 10=60$
$5 \times 10=50$	$1 \times 10=10$
$6 \times 10=60$	$5 \times 10=50$
$7 \times 10=70$	$9 \times 10=90$
$8 \times 10=80$	$7 \times 10=70$
$9 \times 10=90$	$10 \times 10=100$
$10 \times 10=100$	$3 \times 10=30$
$11 \times 10=110$	$4 \times 10=40$
$12 \times 10=120$	$11 \times 10=110$
Date completed:	Date completed:
Witnessed by:	Witnessed by:

Yellow Yr1 (Silver)

I know my 5 and 2 times table in order and in random order. The date I achieved this is:

$\frac{5 \times \text { table }}{1 \times 5=5}$	$\frac{5 \times \text { table }}{12 \times 5=60}$
$2 \times 5=10$	$2 \times 5=10$
$3 \times 5=15$	$4 \times 5=20$
$4 \times 5=20$	$5 \times 5=25$
$5 \times 5=25$	$6 \times 5=30$
$6 \times 5=30$	$9 \times 5=45$
$7 \times 5=35$	$10 \times 5=50$
$8 \times 5=40$	$7 \times 5=35$
$9 \times 5=45$	$11 \times 5=55$
$10 \times 5=50$	$8 \times 5=40$
$11 \times 5=55$	$1 \times 5=5$
$12 \times 5=60$	$5 \times 2=10$
Date completed:	Date completed:
Witnessed by:	Witnessed by:
$2 \times$ table	$2 \times$ table
$1 \times 2=2$	$1 \times 2=2$
$2 \times 2=4$	$7 \times 2=14$
$3 \times 2=6$	$3 \times 2=6$
$4 \times 2=8$	$10 \times 2=20$
$5 \times 2=10$	$4 \times 2=8$
$6 \times 2=12$	$11 \times 2=22$
$7 \times 2=14$	$5 \times 2=10$
$8 \times 2=16$	$6 \times 2=12$
$9 \times 2=18$	$8 \times 2=16$
$10 \times 2=20$	$9 \times 2=18$
$11 \times 2=22$	$12 \times 2=24$
$12 \times 2=24$	$2 \times 2=4$
Date completed:	Date completed:
Witnessed by:	

Yellow Yr1 (Gold)

I can calculate one more and one less than one, two and three digit numbers:

Question	One more and one less	Witnessed by:
1	One more than: 20	
2	One less than: 15	
3	One more than: 37	
4	One more than: 69	
5	One less than: 100	
6	One less than: 5	
7	One less than: 121	
8	One more than: 100	
9	One less than: 67	
10	One less than: 88	
11	One more than: 72	
12	One less than: 25	
13	One more than: 150	
14	One more than: 26	
15	One less than: 20	

Pink Yr2 (Bronze)

I know my 3 times table in order and in random order. The date I achieved this is:

$3 \times$ table	$\frac{3 \times \text { table }}{1 \times 3=3}$
$1 \times 3=3$	$8 \times 3=24$
$2 \times 3=6$	$2 \times 3=6$
$3 \times 3=9$	$12 \times 3=36$
$4 \times 3=12$	$3 \times 3=9$
$5 \times 3=15$	$9 \times 3=27$
$6 \times 3=18$	$4 \times 3=12$
$7 \times 3=21$	$6 \times 3=18$
$8 \times 3=24$	$7 \times 3=21$
$9 \times 3=27$	$10 \times 3=30$
$10 \times 3=30$	$11 \times 3=33$
$11 \times 3=33$	$5 \times 3=15$
$12 \times 3=36$	$\underline{\text { Date completed: }}$
	Witnessed by:
Date completed:	Witnessed by:

Pink Yr2 (Silver)

I understand the place value of tens and ones:

Pink Yr2 (Gold)

I can compare numbers up to 100 using the greater than, less than and equals signs ><=

Question	Insert the correct sign $=<>$		Witnessed by:
1	37	43	
2	23	23	
3	98	27	
4	10	0	
5	78	23	
6	100	100	
7	10	15	
8	67	19	
9	57	12	
10	11	25	
11	64	64	
12	23	22	
13	1	0	
14	17	100	
15	12	18	

Green Yr3 (Bronze)

I know my 4,8,50 and 100 times table in order.
The date I achieved this is:

$\frac{4 \times \text { table }}{1 \times 4=4}$	$\frac{8 \times \text { table }}{1 \times 8=8}$
$2 \times 4=8$	
$3 \times 4=12$	$2 \times 8=16$
$4 \times 4=16$	$3 \times 8=24$
$5 \times 4=20$	$4 \times 8=32$
$6 \times 4=24$	$5 \times 8=40$
$7 \times 4=28$	$6 \times 8=48$
$8 \times 4=32$	$7 \times 8=56$
$9 \times 4=36$	$8 \times 8=64$
$10 \times 4=40$	$9 \times 8=72$
$11 \times 4=44$	$10 \times 8=80$
$12 \times 4=48$	$11 \times 8=88$
Date completed:	$12 \times 8=96$
Witnessed by:	Date completed:
$50 \times$ table	Witnessed by:
$1 \times 50=50$	$100 \times$ table
$2 \times 50=100$	$1 \times 100=100$
$3 \times 50=150$	$2 \times 100=200$
$4 \times 50=200$	$3 \times 100=300$
$5 \times 50=250$	$4 \times 100=400$
$6 \times 50=300$	$5 \times 100=500$
$7 \times 50=350$	$6 \times 100=600$
$8 \times 50=400$	$7 \times 100=700$
$9 \times 50=450$	$8 \times 100=800$
$10 \times 50=500$	$9 \times 100=900$
$11 \times 50=550$	$10 \times 100=1000$
$12 \times 50=600$	$11 \times 100=1100$
Date completed:	$12 \times 100=1200$
	Date completed:
Witnessed by:	

Green Yr3 (Silver)

I know my 4,8,50 and 100 times table in random order. The date I achieved this is:

$\begin{gathered} \frac{4 x \text { table }}{1 \times 4=4} \\ 3 \times 4=12 \\ 6 \times 4=24 \\ 10 \times 4=40 \\ 8 \times 4=32 \\ 4 \times 4=16 \\ 7 \times 4=28 \\ 9 \times 4=36 \\ 11 \times 4=44 \\ 12 \times 4=48 \\ 5 \times 4=20 \\ 2 \times 4=8 \end{gathered}$	$\begin{gathered} \frac{8 \times \text { table }}{6 \times 8=48} \\ 8 \times 8=64 \\ 1 \times 8=8 \\ 2 \times 8=16 \\ 10 \times 8=80 \\ 5 \times 8=40 \\ 12 \times 8=96 \\ 3 \times 8=24 \\ 4 \times 8=32 \\ 7 \times 8=56 \\ 9 \times 8=72 \\ 11 \times 8=88 \end{gathered}$
Date completed: Witnessed by:	Date completed: Witnessed by:
$\begin{gathered} \frac{50 \times \text { table }}{1 \times 50=50} \\ 10 \times 50=500 \\ 6 \times 50=300 \\ 5 \times 50=250 \\ 2 \times 50=100 \\ 4 \times 50=200 \\ 7 \times 50=350 \\ 3 \times 50=150 \\ 12 \times 50=600 \\ 8 \times 50=400 \\ 9 \times 50=450 \\ 11 \times 50=550 \end{gathered}$	$\begin{gathered} 100 \times \text { table } \\ \hline 1 \times 100=100 \\ 6 \times 100=600 \\ 11 \times 100=1100 \\ 8 \times 100=800 \\ 2 \times 100=200 \\ 3 \times 100=300 \\ 4 \times 100=400 \\ 5 \times 100=500 \\ 7 \times 100=700 \\ 10 \times 100=1000 \\ 9 \times 100=900 \\ 12 \times 100=1200 \end{gathered}$
Date completed: Witnessed by:	Date completed: Witnessed by:

Green Yr3 (Gold)

I can calculate $10 / 100$ more and less than a given number:

Question	10/100 more or less	Witnessed by:
$\mathbf{1}$	10 more than: 275	
$\mathbf{2}$	10 less than: 894	10 less than: 1000
$\mathbf{3}$	100 more than: 990	
$\mathbf{5}$	100 less than: 670	
$\mathbf{6}$	10 more than: 27	100 more than: 873
$\mathbf{7}$	100 less than: 987	10 more than: 590
$\mathbf{9}$	100 less than: 600	
$\mathbf{1 1}$	100 more than: 654	100 less than: 100
$\mathbf{1 2}$	10 less than: 10	100 more than: 0
$\mathbf{1 4}$	10 less than: 1000	
$\mathbf{1 5}$		
$\mathbf{1 5}$		

Purple Yr4 (Bronze)

I know my 6, 7, 9 and 25 times table in order. The date I achieved this is:

$6 x$ table	$7 x$ table
$1 \times 6=6$	$1 \times 7=7$
$2 \times 6=12$	$2 \times 7=14$
$3 \times 6=18$	$3 \times 7=21$
$4 \times 6=24$	$4 \times 7=28$
$5 \times 6=30$	$5 \times 7=35$
$6 \times 6=36$	$6 \times 7=42$
$7 \times 6=42$	$7 \times 7=49$
$8 \times 6=48$	$8 \times 7=56$
$9 \times 6=54$	$9 \times 7=63$
$10 \times 6=60$	$10 \times 7=70$
$11 \times 6=66$	$11 \times 7=77$
$12 \times 6=72$	$12 \times 7=84$
Date completed:	Date completed:
Witnessed by:	Witnessed by:
$9 x$ table	$25 \times$ table
$1 \times 9=9$	$1 \times 25=25$
$2 \times 9=18$	$2 \times 25=50$
$3 \times 9=27$	$3 \times 25=75$
$4 \times 9=36$	$4 \times 25=100$
$5 \times 9=45$	$5 \times 25=125$
$6 \times 9=54$	$6 \times 25=150$
$7 \times 9=63$	$7 \times 25=175$
$8 \times 9=72$	$8 \times 25=200$
$9 \times 9=81$	$9 \times 25=225$
$10 \times 9=90$	$10 \times 25=250$
$11 \times 9=99$	$11 \times 25=275$
12×9=108	$12 \times 25=300$
Date completed:	Date completed:
Witnessed by:	Witnessed by:

Purple Yr4 (Silver)
I know my 6, 7, 9 and 25 times table in random order. The date I achieved this is:

$\frac{6 \times \text { table }}{1 \times 6=6}$	$\frac{7 \times \text { table }}{1 \times 7=7}$
$4 \times 6=24$	$5 \times 7=35$
$5 \times 6=30$	$11 \times 7=77$
$2 \times 6=12$	$2 \times 7=14$
$3 \times 6=18$	$4 \times 7=28$
$6 \times 6=36$	$6 \times 7=42$
$7 \times 6=42$	$7 \times 7=49$
$8 \times 6=48$	$9 \times 7=63$
$11 \times 6=66$	$3 \times 7=21$
$12 \times 6=72$	$8 \times 7=56$
$9 \times 6=54$	$10 \times 7=70$
$10 \times 6=60$	$12 \times 7=84$
Date completed:	Date completed:
Witnessed by:	Witnessed by:
$9 \times$ table	$25 \times$ table
$1 \times 9=9$	$3 \times 25=75$
$11 \times 9=99$	$6 \times 25=150$
$2 \times 9=18$	$9 \times 25=225$
$4 \times 9=36$	$1 \times 25=25$
$6 \times 9=54$	$2 \times 25=50$
$7 \times 9=63$	$4 \times 25=100$
$8 \times 9=72$	$5 \times 25=125$
$10 \times 9=90$	$11 \times 25=275$
$12 \times 9=108$	$7 \times 25=175$
$5 \times 9=45$	$8 \times 25=200$
$9 \times 9=81$	$12 \times 25=300$
$3 \times 9=27$	$10 \times 25=250$
Date completed:	Wate completed:
Witnessed by:	

Purple Yr4 (Gold)

I can count backwards through zero into negative integers. The date I achieved this is:

Question	Negative numbers	Witnessed by:
1	25-27	
2	7 less than -5	
3	122-134	
4	3-17	
5	9-27	
6	90-99	
7	28-28	
8	26-45	
9	9 fewer than 2	
10	Subtract 21 from 12	
11	45 minus 49	
12	35 take away 49	
13	76-82	
14	2-3	
15	20-56	

Orange Yr5 (Bronze)

I know all of my times tables out of order.
The date I achieved this is:

Number	Question	Number	Question
1	$4 \times 9=36$	26	$9 \times 4=36$
2	$5 \times 5=25$	27	$8 \times 8=64$
3	$9 \times 6=54$	28	$8 \times 7=56$
4	$4 \times 4=16$	29	$7 \times 12=84$
5	$8 \times 2=16$	30	$9 \times 1=9$
6	$6 \times 7=42$	31	$4 \times 2=8$
7	$7 \times 8=56$	32	$9 \times 3=27$
8	$10 \times 10=100$	33	$4 \times 6=24$
9	$6 \times 1=6$	34	$7 \times 5=35$
10	$3 \times 7=21$	35	$6 \times 9=54$
11	$6 \times 6=36$	36	$5 \times 100=500$
12	$3 \times 2=6$	37	$3 \times 8=24$
13	$8 \times 3=24$	38	$7 \times 7=49$
14	$9 \times 50=450$	39	$8 \times 4=32$
15	$4 \times 7=28$	40	$7 \times 6=42$
16	$6 \times 4=24$	41	$3 \times 5=15$
17	$5 \times 8=40$	42	$9 \times 2=18$
18	$3 \times 10=30$	43	$2 \times 4=8$
19	$9 \times 5=45$	44	$8 \times 6=48$
20	$5 \times 1=5$	45	$9 \times 7=63$
21	$4 \times 3=12$	46	$5 \times 9=45$
22	$7 \times 9=63$	47	$10 \times 2=20$
23	$8 \times 0=0$	48	$6 \times 25=150$
24	$7 \times 2=14$	49	$8 \times 9=72$
25	$6 \times 3=18$	50	$7 \times 4=28$

Orange Yr5 (Silver)

I can round to the nearest 10, 100, 1000, 10000, 100000, 1000000. The date I achieved this is:

Question	Round to the nearest 10 , $100,1000,10000,100000$, 1000000	Witnessed by:
1	To the nearest 10: 5	
2	To the nearest 100: 87	
3	To the nearest 1000: 1672	
4	To the nearest 10,000: 15,000	
5	To the nearest 100, 000: 550,000	
6	To the nearest $1,000,000$: $2,222,900$	
7	To the nearest 10: 29	
8	To the nearest 100, 000: 330,000	
9	To the nearest $1,000,000$: 9,234,000	
10	To the nearest 1000: 9499	
11	To the nearest 100: 1234	
12	To the nearest 1000: 2500	
13	To the nearest 1,000,000: $3,500,000$	
14	To the nearest 100: 798	
15	To the nearest 10,000: 12,000	

Orange Yr5 (Gold)

I can verbalise what the roman numerals stand for in numbers.
The date I achieved this is:

Question	Roman Numerals	Witnessed by:
1	I	
2	IV	
3	VIII	
4	X	
5	XIII	
6	XIV	
7	XC	
8	LXXX	
9	L	
10	XVI	
11	XCIX	
12	CCX	
13	XXXVIII	
14	CL	
15	c	

Blue Yr6 (Bronze)

I can recite all of my times tables out of order including decimals. The date I achieved this is:

Number	Question	Number	Question
1	$4 \times 50=200$	26	48 divided by 6 is 8
2	$0.3 \times 9=2.7$	27	$0.9 \times 6=5.4$
3	$6 \times 100=600$	28	$6 \times 50=300$
4	$0.7 \times 6=4.2$	29	Double 9 is 18
5	$7 \times 20=140$	30	$9 \times 300=2700$
6	$3 \times 300=900$	31	$? \times 3=24$
7	$0.5 \times 4=2$	32	$4 \times 70=280$
8	$5 \times 700=3500$	33	Is 4×4 a square number? (y)
9	$6 \times 8=48$	34	$0.1 \times 1=0.1$
10	40 divided by $5=8$	35	42 divided by 7 is 6
11	The product of 10 and 5 is 50	36	$9 \times ?=63$
12	$7 \times 0.1=0.7$	37	$50 \times 50=2500$
13	$5 \times 60=300$	38	72 divided by 8 is 9
14	$10 \times 8=80$	39	The product of 10 and 7 is 70
15	21 divided by 7 is 3	40	$? \times 8=64$
16	The product of 7 and 4 is 28	41	Is 2×7 a square number? n$)$
17	$4 \times ?=40$	42	$0.4 \times 8=3.2$
18	Double 6 is 12	43	$7 \times 5=35$
19	Is 2×2 a square number? (y)	44	$0.03 \times 6=0.18$
20	$8 \times ?=56$	45	Double 8 is 16
21	54 divided by 9 is 6	46	$0.05 \times 8=0.4$
22	$4 \times 90=360$	47	72 divided by 8 is 9
23	$0.7 \times 7=4.9$	48	$7 \times 8=56$
24	$9 \times 400=3600$	49	$? \times 5=25$
25	The product of 9 and 5 is 45	50	$900 \times 90=81000$

Blue Yr6 (Silver)

I can convert between figures and words understanding place value up to 10, 000, 000.
The date I achieved this is:

Question	Figures	Words	Witnessed by:
1		Ten thousand one hundred and seven	
2	22,367		
3		Four hundred and one	
4	16,027		
5		One million	
6		Seventy thousand three hundred and seven	
7	96,200,345		
8		Twenty thousand	
9	17,777		
10		Nine million, nine thousand and seventy six	
11	20,000,000		
12	1090		
13		Four million and nine hundred thousand	
14	90,000,000		
15	23765		

Blue Yr6 (Gold)

I can solve simple algebraic equations using BIDMAS.
The date I achieved this is:

Question	Equation	Answer	Witnessed by:
$\mathbf{1}$	$3(5 \mathrm{x}-4)=2(2 \mathrm{x}+5)$		
$\mathbf{2}$	$5 \mathrm{x}-2=12-2 \mathrm{x}$		
3	$2(5 \mathrm{x}+1)=3(3 \mathrm{x}+7)$		
$\mathbf{4}$	$2 \mathrm{x}+2=\mathrm{x}+4$		
$\mathbf{5}$	$3(2 \mathrm{x}-5)=3(\mathrm{x}+1)$		
$\mathbf{6}$	$2(2 \mathrm{x}+1)-3(\mathrm{x}-1)=8$		
$\mathbf{7}$	$3 x+5=11$		
$\mathbf{8}$	$2 y+1.8=4 y-4.4$		
9	$8(m+5)=16$		
10	$\frac{1}{2} x+6=10$		
11	$2(3 x-7)+4(3 x+2)=$ $6(5 x+9)+3$		
12	$5 c-4-2 c+1=8 c+2$		
13	$5 x-6=3 x-8$		
14	$2 x-4=10$	$2 x-3=1 / 2$	
15			

